ELK Engineering Associates Inc.

Specializing In Corrosion & Cathodic Protection Services
Establishing a Corrosion Control Program for a Large Diameter Concrete Cylinder Water Line

Presented to NACE International North Texas Section
by Earl Kirkpatrick, P.E.
26 September 2012
• **Task 1** – Initial Corrosion Assessment

 Close Interval Survey to define areas of active corrosion.

 Active corrosion activity was seen over most reaches of the pipelines.
The bonding methods shown provide electrical conductivity across the joint and accommodate relative movement due to pipeline settlement. To provide access for welding the bonds, as shown in diagrams A and B, recesses are chipped in the mortar coating as required after field assembly. Separate bonding is not required when joints are field welded.

Figure 12-2 Typical joint bonding details for AWWA C303-type pipe or lined cylinder AWWA C301-type pipe
Description of Lines Under Investigation for Schertz Seguin Local Government Corporation

- **Line A** – 42” diameter, Class 200, RCCP water line from the Nixon Pump Station to the Schertz Booster Pump Station.

 This line is 109,040 feet in length with 10 original plus 84 new installed test stations.

- **Line B** – 36” diameter, Class 150 – 250, RCCP water line from the Schertz Booster Pump Station to the Live Oak storage tank facility in Schertz, Texas.

 This line is 97,544 feet in length with 9 original plus 75 new installed test stations.

- **Line C** – 30” diameter, Class 150, RCCP water line from Line A station number 973+00 to the Sequin Water Plant.

 This line is 19,325 feet in length with 4 original plus 11 new installed test stations.
• **Task 2** – Install 174 additional test stations at locations recommended and described in the previous report. A schedule of recommended test station locations was provided.
Typical test wire cad weld connections at pipe joint.
Test wire connections at test station.

Typical test wire connections at casing.

Typical test station installation.
• **Task 3** - Perform test wire effectiveness tests and pipe continuity tests across the entire length of the pipeline. Should any of the pipe continuity tests reveal a discontinuity between two test points, additional work would be required to locate and repair the ineffective pipe joint bonds.
Typical Concrete Pipe Joint Bonds
Calculation Example for Theoretical Resistance

42” DIA 10 GA(Class 150)

- **Rc** = Cylinder Resistance
- **\(\rho_s \)** = Resistivity of Cylinder Steel, in ohm-cm
- **Lc** = length of cylinder in a pipe section, in feet
- **Tc** = Thickness of cylinder, in inch
- **D** = Outside diameter of steel Cylinder, in inch
- **Rb** = Bond Resistance
- **Rf** = Fringing Resistance
- **\(\rho_c \)** = Bond material Resistivity, in ohm-cm
- **Lb** = Length of bonding copper cable
- **Ab** = cross section area of bonding copper cable, steel bar or clip, in square inch
- **N** = number of copper cables, bar or clip

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tc</td>
<td>0.1345 inch</td>
</tr>
<tr>
<td>Lc</td>
<td>1 Feet</td>
</tr>
<tr>
<td>D</td>
<td>43.875 in inch</td>
</tr>
<tr>
<td>(\rho_s)</td>
<td>0.00003 ohm-cm</td>
</tr>
<tr>
<td>Rc</td>
<td>7.66E-06 ohm per ft</td>
</tr>
<tr>
<td>Lb</td>
<td>2.5625 inch</td>
</tr>
<tr>
<td>Ab</td>
<td>0.159719 sq inch</td>
</tr>
<tr>
<td>N</td>
<td>3</td>
</tr>
<tr>
<td>(\rho_c)</td>
<td>0.00003 ohm-cm</td>
</tr>
</tbody>
</table>

#10 = 0.1345

Thickness 0.1345

Width 1.1875
WEATHER: Cool
Line Designation: Line A
STA. NO.: 16750.00
STA. NO.: 15375.00
TOTAL DISTANCE TESTED: 1375.00 FT.
PROJECT: Continuity Testing
OWNER: SSLGC

PIPE CONTINUITY TEST

ACTUAL RESISTANCE:

<table>
<thead>
<tr>
<th>TEST</th>
<th>I<sub>ON</sub> (MA)</th>
<th>I<sub>OFF</sub> (MA)</th>
<th>ΔI</th>
<th>E<sub>ON</sub> (MV)</th>
<th>E<sub>OFF</sub> (MV)</th>
<th>ΔE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18.0</td>
<td>18.0</td>
<td></td>
<td>154.0</td>
<td>19.0</td>
<td>135.0</td>
</tr>
<tr>
<td>2</td>
<td>18.0</td>
<td>18.0</td>
<td></td>
<td>154.0</td>
<td>19.0</td>
<td>135.0</td>
</tr>
<tr>
<td>3</td>
<td>18.0</td>
<td>18.0</td>
<td></td>
<td>154.0</td>
<td>19.0</td>
<td>135.0</td>
</tr>
<tr>
<td>Avg</td>
<td>18.0</td>
<td>18.0</td>
<td></td>
<td>154.0</td>
<td>19.0</td>
<td>135.0</td>
</tr>
</tbody>
</table>

THEORETICAL RESISTANCE OF TESTED SEGMENT:

- R_{test} (Based Upon ΔE/ΔI = R) = 7.50

RESISTANCE OF PIPE DETERMINED BY:

- INPUT: 42-Inch MFG
- RESISTANCE OF PIPE/FT: 0.00000766 Ohms

RESISTANCE OF JOINT BONDS CALCULATED FROM

- BOND WIRE SIZE / TYPE: 1 CLIP 2
- RESISTANCE OF BOND: 0.0001896 Ohms
- LENGTH OF BOND WIRE: NA
- NUMBER OF BONDS / JOINT: 3 Ea.

\[R_{thor} = (L_{wire} \times R_{wire}) + (N_{bonds} \times R_{bonds}) \]

\[R_{thor} = \left(\frac{1375.00 \text{ FT.}}{45} \times 0.0000077 \text{ OHMS/FT.} \right) + (0.0001896 \text{ OHms}) = 0.0190645 \text{ Ohms} \]

ACCEPTANCE:

- IF R_{test} IS LESS THAN OR EQUAL TO 1.15 TIMES R_{thor}, THE PIPELINE SEGMENT IS ELECTRICALLY CONTINUOUS

\[R_{test} = 7.50 \text{ Ohms} \]

\[115\% \times R_{thor} = 0.0190645 \text{ Ohms} \]

\[R_{test} = 0.0219242 \text{ Ohms} \]

CONCLUSION

THIS PIPELINE SEGMENT IS NOT ELECTRICALLY CONTINUOUS
Results of Continuity Testing

- **Line A** – 83 pipe spans only 50 could be tested
 48 failed
 2 passed
 96% failed
 4% passed

- **Line B** – 71 pipe spans only 62 could be tested
 61 failed
 1 passed
 98.39% failed
 1.61% passed

- **Line C** – 10 pipe spans only 8 could be tested
 7 failed
 1 passed
 87.5% failed
 12.5% passed
Cathodic Protection (CP) Can Mitigate Future Corrosion Failures

<table>
<thead>
<tr>
<th>Galvanic Anode CP</th>
<th>Impressed Current CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pro: Simple Systems</td>
<td>Pro: Less costly than GACP for continuous pipe</td>
</tr>
<tr>
<td>Minimum routine monitoring</td>
<td>Fewer excavations</td>
</tr>
<tr>
<td>Con: Digging every other joint</td>
<td>Con: Will require extensive digs</td>
</tr>
<tr>
<td>ROW damage/land owner issues</td>
<td>Time and labor required to locate digs</td>
</tr>
<tr>
<td>ROW Damage/land owner issues</td>
<td>ROW Damage/land owner issues</td>
</tr>
</tbody>
</table>

Both Approaches: Multi year construction program
The Way Forward

- SSLGC should designate the Highest Consequence Area (HCA) pipe section for further investigation
- Select a short segment within the HCA with no ROW issues for detailed evaluation by ELK
- ELK working with contractor to locate and bond discontinuities and gather data for CP design
- ELK to conduct design survey over all of pipelines A, B, and C
- Design report to provide:
 - Determination of CP type: GACP or ICCP
 - Further assessment of all 3 pipelines
 - Design details
 - Costs
 - Suggested/recommended construction schedule
- Construction and commissioning of recommended system
QUESTIONS